

KVM performance tunning

Senior Staff engineer Yang Zhang

Problems in KVM Cloud

- · Alibaba Cloud: millions of VMs run in KVM
- Typical problems are observed from real scenarios
 - Idle latency
 - Timer
 - Scheduler

Idle latency

- Topic in KVM forum 2013: "KVM vs. Message Passing Throughput"
- Topic from David Matlack: Message Passing Workloads in KVM
- Cost in idle -> running and running -> idle transition is amplified in real businesses.

Data of real business scenario (java)

Real Scenario

Communication over the network

Where is the Overhead?

Overhead from: IPI
APIC Timer
HLT

Existing Solution

- Idle = Poll: Waste CPU cycle, hurt others performance(HT)
- Disable NOHZ: Not the default configuration in modern distros
- KVM halt polling: eliminate overhead of scheduler

Our Solution – smart idle poll

- Poll inside VM: poll in idle path
 - Eliminate all overhead: IPI, TIMER, HLT
- Use dynamic poll to get better performance
 - Change the poll time based on the prediction
- RFC here https://lkml.org/lkml/2017/8/29/279

Data of real business scenario (java)

Fio 4k latency

	kvm halt poll=0 smart idle poll=0	kvm halt poll=100000ns smart idle poll=0	kvm halt poll=0 smart idle poll=100000ns	kvm halt poll=100000ns smart idle poll=100000ns
inject lus	42. 31us, stdev=3. 54	31. 98us, stdev=3. 68	25.98us, stdev=3.37	25. 95us, stdev=3. 15
inject 20us	69. 01us, stdev=4. 79	53. 74us, stdev=3. 59	52. 02us, stdev=3. 38	46. 94us, stdev=3. 36
inject 50us	98.85us, stdev=3.66	84. 25us, stdev=3. 36	82.06us, stdev=9.36	77. 41us, stdev=4. 16

Problem with Timer

New PV timer: Exitless Timer

• Share page: share timer info and sync info

Agent timer: set timer in hardware

- Share page:
 - Per vcpu share page between guest and kvm
 - Guest: store next timer info, read next sync info
 - KVM: set next timer in hardware, store next sync info

- Agent timer:
 - · Scan share page regularly
 - Set next sync time
 - Dedicate CPU

- Timer inject:
 - Timer fire in another CPU
 - Inject interrupt thru PI: no vmexit

Bare metal: Skylake + Centos7u2

VM: Skylake + Centos7u2

Next Plan

- Resource isolation
 - Share low level resource impact performance:
 - · Cache, Memory bandwidth, PCIE bandwidth
 - RDT

Thank You