KVM on Embedded Power Architecture Platforms

Stuart Yoder Software Architect, Freescale Semiconductor

Agenda

- ▶ Background
 - Freescale / Networking
 - Embedded Systems
 - Use Cases
- ► KVM on Embedded Power
 - New requirements
 - Status
- ► Future / To Do

Freescale: Networking & Multimedia Group

2010 Freescale Revenue

NMG Revenue by Market

Key Networking Customers

Freescale is #1 in the network/communications processor market (300+million units shipped since 1989)

QorlQ Processing Platforms

QorlQ P5 P5020, P5010	64-bit High End Up to 2.2 GHz	Service Provider Network Admission Routers Controls Storage Networks
QorlQ P4 P4080, P4040	4 – 8 Cores Up to 1.5 GHz	Metro Carrier Edge Router IMS Controller Radio Network Control Router Serving Node Router
QorlQ P3 P3041	2 – 4 Cores Up to 1.5 GHz	Converged Media SSL, IPSec, Access Gateway Firewall Gateway
QorlQ P2 P2040, P2020, P2010	1 – 2 Cores Up to 1.2 GHz	Unified Threat Media Gateway Wireless Media Gateway Base Station
QorlQ P1 P1010, P1011, P1012, P1013, P1014, P1015, P1016, P1017, P1020, P1021, P1022, P1023, P1024, P1025	1 – 2 Cores 400 MHz to 1 GHz	Integrated Network Attached Home Media Enterprise Services Router Storage Hub WAP

Virtualization — Trends

Embedded Systems

- ► How is embedded different?
 - Fixed function devices— not general purpose
 - Huge variety of hardware platforms
 - No standard platforms (no BIOS, ACPI, UEFI)
 - Real time constraints
 - Large variety of operating systems
 - VDC Research (2011 report)
 - About 50% of devices shipped by survey respondents had no formal OS or an in-house developed OS
- Trend: move to multi-core SoCs, but SMP with a single OS will not be the only usage model

Trend: Consolidation on Multicore Processors

Benefit: Cost/power savings

Use Cases/Examples

- ► Control-plane / data-plane split into partitions
- Migration move to new hardware, preserve investment in software
 - Run legacy software alongside new software
 - Add Linux[®] to a system
- ► Sandbox isolate untrusted software

Use Cases/Examples...continued

High availability — active/standby configuration without additional hardware

► In-service upgrade

► Many more possibilities...

Standards

power.org ePAPR

- Resource discovery (device tree)
- Multi-CPU boot
- v1.1 includes virtualization extensions
 - ABI
 - APIs (hcalls)

► Power ISA 2.06B

Virtualized implementation notes

Why KVM for embedded Power Architecture?

Our customers are asking for it.

KVM on Power -- History

- **2007-2008**:
 - IBM developed 4xx processor (Book-III E) support (Hollis, Christian)
- **2009**:
 - Freescale did preliminary port to e500v2 (Yu Liu)
- ▶2009
 - Port to server Book III S (Alex Graf)
- **►**2010-2011
 - In progress: port to e500mc, improve/consolidate e500v2 work

New Mechanisms we need

- Assign guests physically contiguous memory
 - e500 MMU software managed
 - TLB0 4KB mappings
 - TLB1 small number of variable sized, large pages
 - Needed for performance (e.g. 80% speedup in kernel boot time)
 - Required for pass-through I/O devices to do DMA
 - Freescale IOMMU supports a small number of DMA windows per device
 - Devices with no IOMMU (e500v2-based)
- ► Pass-through of SoC I/O devices (non-PCI) to guests

KVM - e500v2

KVM – e500mc

Status Summary

- ► Initial ports to e500v2 and e500mc based SoCs are complete
 - Basic features are there—sufficient to boot Linux[®] guest
 - e500v2 uses paravirt— shared page of memory and guest side patching
- Prototype direct map (pass-through) support for memory and I/O devices is working
 - Use in-kernel MPIC
- Upstreaming in progress

To Do

- ► Patches --> upstream
- Performance analysis & tuning
- ► Get rid of static guest device tree files
- Work out an improved mechanism to pass-through non-PCI I/O devices and physical memory
 - Hugetlbfs
- ▶IOMMU support for SoCs with a PAMU
- ► Guest SMP
- ► 64-bit support (e5500)
- Additional VCPU features— e.g. debug, perfmon, cache locking

To Do...continued

- ► Error management
- ► Real time
- ► High availability
- ► Inter-partition communication/doorbells
- Direct hardware interrupts to guest OSes for passthrough devices
- ► Virtual time
- ► Libvirt
- ▶ Processor Roadmap
 - e6500 has hardware threads and LRAT (logical to real address translation)

Conclusion

- ► Partitioning/virtualization is here to stay in the embedded space
- ► With some modest changes, KVM addresses many of the requirements
- Freescale sees direct customer demand for KVM and is committed to enabling this

