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Agenda 

• Overview of Hardware Enhancements 

• Optimized Interrupt/APIC Virtualization 
− APIC-Register Virtualization 
− Virtual-Interrupt Delivery 
− Posted-Interrupt Processing 

• Enabling for KVM 

• Summary 
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Interrupt/APIC Virtualization: Overview 

• VMM must virtualize guest’s interrupts and interrupt controller 
(APIC) 
− Models APIC control state on a “virtual-APIC page” in memory 

• VMM must emulate nearly all guest accesses to APIC control 
registers 
− Require VM exits and entries 
− Decode and emulate guest instructions that access APIC (except x2APIC 

mode) 
− Except for Intel® VT FlexPriority, which virtualizes access to one APIC control 

register 
− Task priority – TPR 
− No VM exits required in this case 

• VMM must virtualize all interrupts coming to guest 
− Must determine when guest is ready to receive interrupts and deliver as 

needed 

• Virtualization of interrupts and APIC is a major source of overhead 
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Motivations for Further Optimizations 

• Reduce unique overheads of virtualization 
− Intel is fanatically committed 

• Virtualization has come to be default deployment platform for IT 
− Any application, even most performance demanding, may run in virtualization 

• Virtualization is foundation of Cloud 
− More I/O performance/scalability for Web apps, Database, Big Data, HPC, 

etc. 

• Optimized Interrupt/APIC Virtualization is helpful for nested 
virtualization 
− VMMs typically have more timer and I/O interrupts. 
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APIC-Register Virtualization 

• Virtualized APIC-Read Accesses: 
− Emulate APIC-access, w/o causing VM exit 
− Read data from Virtual-APIC page at page offset specified APIC-access 

page 
− 02H (local APIC ID), 03H (local APIC version), 08H (task priority), …,  

• Virtualized APIC-Write Accesses: 
− Write data to Virtual-APIC page at page offset specified APIC-access page 
− Emulate APIC-access, w/o causing VM exit 
− 08H (task priority), 0BH (end of interrupt), …, 30H and 31H (interrupt 

command),… 
− APIC-write VM Exit (new VM exit) 
− Transform fault-like APIC-access VM exits into trap-like APIC-write VM 

exits 

•  Include virtual x2APIC mode support 

 

Virtual-APIC 
Page 

Posted-
interrupt 

Descriptor 

VMCS 
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Virtual-Interrupt Delivery 

• Evaluation of pending virtual interrupts:  
− VM Entry, TPR virtualization, EOI virtualization, self-IPI virtualization, and 

posted-interrupt processing 

• Once recognized, a virtual interrupt may be delivered in guest: 
− “interrupt-window exiting” VM-execution control needs to 0 
− Eliminate “interrupt-window exiting” 

• Deliver virtual interrupts w/o VM exit: 
− Updates guest interrupt status (new 16-bit VMCS field) and delivers event 

within guest 
− Requesting virtual interrupt (RVI) (low byte) – vector of the highest priority 

virtual interrupt that is requesting service 
− Servicing virtual interrupt (SVI) (high byte) – vector of the highest priority 

virtual interrupt that is in service 
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Virtual-Interrupt Delivery (Details) 

Vector ← RVI; 
VISR[Vector] ← 1; 
SVI ← Vector; 
VPPR ← Vector & F0H; 
VIRR[Vector] ← 0; 
If (any bits set in VIRR) 

 RVI ← highest index of bit set in VIRR; 
else 

 RVI ← 0; 
Deliver interrupt with Vector through IDT; 
Cease recognition of any pending virtual interrupt; 
 

•  *: VISR (Virtual interrupt-service register), VPPR (Virtual processor-priority 
register), VIRR (Virtual interrupt-request register) are in Virtual-APIC page  
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EOI Virtualization 

• Key to reduce virtualization overhead 
− Every interrupt causes access to APIC EOI register (offset 0x0B0) 

• EOI-Exit Bitmap (in VMCS) determines which virtualized writes 
cause VM exits: 
− EOI_EXITn (n=0, 1, 2, and 3) vectors from n*64 to (n+1)*64 – 1 
− Allows to avoid VM exits (if applicable) if the bit is not set 
− VM exits can be avoided for many cases 

• EOI virtualization uses and updates Guest Interrupt Status (SVI) 

• Evaluate pending virtual interrupts 
− Virtual interrupts are delivered accordingly if recognized 

• Support x2APIC mode 
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Posted-Interrupt Processing 

•  Sending notification (IPI) w/o VM exit  
− If physical vector == Posted-interrupt notification 

vector (VMCS field)  

•  Process the virtual interrupts by recording 
them as pending on Virtual-APIC page  

•  Record virtual interrupts in Posted-Interrupt 
Descriptor 
− Clears ON* 
− Perform logical-OR of PIR* into VIRR and clears PIR 
− RVI to be maximum of old value of RVI and highest 

index of all bits that were set in PIR 

•  Software needs to set PIR bits for guest 
vectors in advance 

•  *ON: Outstanding Notification, PIR: Posted-
Interrupt Request (format on next page) 

Virtual-APIC 
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VMCS 

Posted-interrupt 
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Posted-interrupt 
Descriptor 

ON 
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Posted-interrupt Descriptor  

•  In general, data structures referenced by VMCS shouldn’t be 
modified when guest is running 

•  The general requirement doesn’t apply to Posted-interrupt 
Descriptor field 
− Use locked read-modify-write instructions to modify 
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Enabling APIC-Register Virtualization in KVM 
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• What KVM does in software 
today: 
− Handled by lapic.c 
− Maintains virtual APIC state in “APIC 

Register Page” (defined in 
kvm_lapic structure), i.e. Virtual -
APIC page. The register layout is 
same as actual local APIC 
− void *regs;!

• Changes for APIC-Register 
Virtualization: 
− Processor simply accesses virtual 

APIC page w/o VM exit if APIC-
Register virtualization is enabled 
− Set 1 in “APIC-register 

virtualization” VM-execution 
control 

− Use trap-like APIC-write VM exits to 
avoid “decode & emulate” 
− New VM Exit Reason: APIC write 

(56). “Guest software completed a 
write to the Virtual-APIC page that 
must be virtualized by VMM 
software” 
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Enabling Virtual-Interrupt Delivery in KVM 
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• What KVM does in software 
today: 
− Emulates APIC with the state 

maintained in Virtual-APIC page  
− Evaluates pending virtual interrupts 
− Manually injects virtual interrupts 

at VM entry time 
− If interrupts are disabled by the 

guest, the processor comes back 
when ready 
− Use Interrupt-window VM exit 

• Changes required for Virtual-
Interrupt Delivery: 
− Have the processor modify Virtual-APIC 

page to maintain virtual APIC state 
− Have the processor evaluate pending 

virtual interrupts and deliver 
− VM entry causes evaluation of 

pending virtual interrupts 
− If interrupts are disabled by the guest, 

the processor delivers virtual interrupt 
without VM exit 
− Don’t use Interrupt-window VM exit 

− EOI Virtualization 
− Set up EOI-Exit Bitmap 
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Usage Examples and Enabling Posted-
Interrupt Processing in KVM  
•  Injecting interrupts to VCPU(s) from 

remote CPU without causing VM exit on 
the destination 
− Guest IPI 
− Virtual device interrupts from remote CPU (incl. 

to frontend from backend) 

• Enabling Guest IPI: 
− Allocate a vector for event notification on the 

host 
− Write the vector to “Posted-interrupt notification 

vector” VMCS field 
− Set a bit in PIR of the destination, 

corresponding to the guest vector for IPI upon 
VM exit caused by access to ICR (Interrupt 
Command Register) in the guest 
− Send the even notification 
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Summary 

• Optimized Interrupt/APIC Virtualization 
− APIC-Register Virtualization, Virtual-Interrupt Delivery, and Posted-Interrupt 

Processing 

•  Enabling the features for KVM 
•  Current status 
− Patches have been submitted, and got helpful comments from Avi, etc.: 
− APIC-Register Virtualization 
− Virtual-Interrupt Delivery 

− Working on optimized “Guest IPI” using Posted-Interrupt Processing 
− Got it working; no VM exits on the destination 

•  Preliminary results (Netperf) 
− Eliminate up to 50% of VM exits (most of those related to virtualization of 

interrupts/APIC) 
− Optimize up to 10% of  VM exits (emulation made easier for some APIC writes) 
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