
KVM Forum 2012

Enabling Optimized Interrupt/APIC
Virtualization in KVM

Jun Nakajima

Intel Open Source Technology Center
November	 8,	 2012	

	
	
	

KVM Forum 2012

Legal Disclaimer
�  INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN
MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

�  Intel may make changes to specifications and product descriptions at any time, without notice.

�  All products, dates, and figures specified are preliminary based on current expectations, and are subject to
change without notice.

�  Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which
may cause the product to deviate from published specifications. Current characterized errata are available on
request.

�  Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

�  *Other names and brands may be claimed as the property of others.

�  Copyright © 2012 Intel Corporation.

2

KVM Forum 2012

Agenda

• Overview of Hardware Enhancements

• Optimized Interrupt/APIC Virtualization
− APIC-Register Virtualization
− Virtual-Interrupt Delivery
− Posted-Interrupt Processing

• Enabling for KVM

• Summary

3

KVM Forum 2012

Interrupt/APIC Virtualization: Overview

• VMM must virtualize guest’s interrupts and interrupt controller
(APIC)
− Models APIC control state on a “virtual-APIC page” in memory

• VMM must emulate nearly all guest accesses to APIC control
registers
− Require VM exits and entries
− Decode and emulate guest instructions that access APIC (except x2APIC

mode)
− Except for Intel® VT FlexPriority, which virtualizes access to one APIC control

register
− Task priority – TPR
− No VM exits required in this case

• VMM must virtualize all interrupts coming to guest
− Must determine when guest is ready to receive interrupts and deliver as

needed

• Virtualization of interrupts and APIC is a major source of overhead

4

KVM Forum 2012

Motivations for Further Optimizations

• Reduce unique overheads of virtualization
− Intel is fanatically committed

• Virtualization has come to be default deployment platform for IT
− Any application, even most performance demanding, may run in virtualization

• Virtualization is foundation of Cloud
− More I/O performance/scalability for Web apps, Database, Big Data, HPC,

etc.

• Optimized Interrupt/APIC Virtualization is helpful for nested
virtualization
− VMMs typically have more timer and I/O interrupts.

5

KVM Forum 2012

APIC-Register Virtualization

• Virtualized APIC-Read Accesses:
− Emulate APIC-access, w/o causing VM exit
− Read data from Virtual-APIC page at page offset specified APIC-access

page
− 02H (local APIC ID), 03H (local APIC version), 08H (task priority), …,

• Virtualized APIC-Write Accesses:
− Write data to Virtual-APIC page at page offset specified APIC-access page
− Emulate APIC-access, w/o causing VM exit
− 08H (task priority), 0BH (end of interrupt), …, 30H and 31H (interrupt

command),…
− APIC-write VM Exit (new VM exit)
− Transform fault-like APIC-access VM exits into trap-like APIC-write VM

exits

•  Include virtual x2APIC mode support

Virtual-APIC
Page

Posted-
interrupt

Descriptor

VMCS

6

KVM Forum 2012

Virtual-Interrupt Delivery

• Evaluation of pending virtual interrupts:
− VM Entry, TPR virtualization, EOI virtualization, self-IPI virtualization, and

posted-interrupt processing

• Once recognized, a virtual interrupt may be delivered in guest:
− “interrupt-window exiting” VM-execution control needs to 0
− Eliminate “interrupt-window exiting”

• Deliver virtual interrupts w/o VM exit:
− Updates guest interrupt status (new 16-bit VMCS field) and delivers event

within guest
− Requesting virtual interrupt (RVI) (low byte) – vector of the highest priority

virtual interrupt that is requesting service
− Servicing virtual interrupt (SVI) (high byte) – vector of the highest priority

virtual interrupt that is in service

7

VMCS
RVI SVI

Guest Interrupt Status

KVM Forum 2012

Virtual-Interrupt Delivery (Details)

Vector ← RVI;
VISR[Vector] ← 1;
SVI ← Vector;
VPPR ← Vector & F0H;
VIRR[Vector] ← 0;
If (any bits set in VIRR)

 RVI ← highest index of bit set in VIRR;
else

 RVI ← 0;
Deliver interrupt with Vector through IDT;
Cease recognition of any pending virtual interrupt;

•  *: VISR (Virtual interrupt-service register), VPPR (Virtual processor-priority
register), VIRR (Virtual interrupt-request register) are in Virtual-APIC page

8

Virtual-APIC
Page*:

VISR, VPPR,
VIRR, etc.

Posted-
interrupt

Descriptor

VMCS

RVI SVI Guest Interrupt Status:

KVM Forum 2012

EOI Virtualization

• Key to reduce virtualization overhead
− Every interrupt causes access to APIC EOI register (offset 0x0B0)

• EOI-Exit Bitmap (in VMCS) determines which virtualized writes
cause VM exits:
− EOI_EXITn (n=0, 1, 2, and 3) vectors from n*64 to (n+1)*64 – 1
− Allows to avoid VM exits (if applicable) if the bit is not set
− VM exits can be avoided for many cases

• EOI virtualization uses and updates Guest Interrupt Status (SVI)

• Evaluate pending virtual interrupts
− Virtual interrupts are delivered accordingly if recognized

• Support x2APIC mode

9

KVM Forum 2012

Posted-Interrupt Processing

•  Sending notification (IPI) w/o VM exit
− If physical vector == Posted-interrupt notification

vector (VMCS field)

•  Process the virtual interrupts by recording
them as pending on Virtual-APIC page

•  Record virtual interrupts in Posted-Interrupt
Descriptor
− Clears ON*
− Perform logical-OR of PIR* into VIRR and clears PIR
− RVI to be maximum of old value of RVI and highest

index of all bits that were set in PIR

•  Software needs to set PIR bits for guest
vectors in advance

•  *ON: Outstanding Notification, PIR: Posted-
Interrupt Request (format on next page)

Virtual-APIC
Page

VMCS

Posted-interrupt
notification

vector

PI Desc.
Address

PIR

Posted-interrupt
Descriptor

ON

10

KVM Forum 2012

Posted-interrupt Descriptor

•  In general, data structures referenced by VMCS shouldn’t be
modified when guest is running

•  The general requirement doesn’t apply to Posted-interrupt
Descriptor field
− Use locked read-modify-write instructions to modify

11

KVM Forum 2012

Enabling APIC-Register Virtualization in KVM

12

• What KVM does in software
today:
− Handled by lapic.c
− Maintains virtual APIC state in “APIC

Register Page” (defined in
kvm_lapic structure), i.e. Virtual -
APIC page. The register layout is
same as actual local APIC
− void *regs;!

• Changes for APIC-Register
Virtualization:
− Processor simply accesses virtual

APIC page w/o VM exit if APIC-
Register virtualization is enabled
− Set 1 in “APIC-register

virtualization” VM-execution
control

− Use trap-like APIC-write VM exits to
avoid “decode & emulate”
− New VM Exit Reason: APIC write

(56). “Guest software completed a
write to the Virtual-APIC page that
must be virtualized by VMM
software”

KVM Forum 2012

Enabling Virtual-Interrupt Delivery in KVM

13

• What KVM does in software
today:
− Emulates APIC with the state

maintained in Virtual-APIC page
− Evaluates pending virtual interrupts
− Manually injects virtual interrupts

at VM entry time
− If interrupts are disabled by the

guest, the processor comes back
when ready
− Use Interrupt-window VM exit

• Changes required for Virtual-
Interrupt Delivery:
− Have the processor modify Virtual-APIC

page to maintain virtual APIC state
− Have the processor evaluate pending

virtual interrupts and deliver
− VM entry causes evaluation of

pending virtual interrupts
− If interrupts are disabled by the guest,

the processor delivers virtual interrupt
without VM exit
− Don’t use Interrupt-window VM exit

− EOI Virtualization
− Set up EOI-Exit Bitmap

KVM Forum 2012

Usage Examples and Enabling Posted-
Interrupt Processing in KVM
•  Injecting interrupts to VCPU(s) from

remote CPU without causing VM exit on
the destination
− Guest IPI
− Virtual device interrupts from remote CPU (incl.

to frontend from backend)

• Enabling Guest IPI:
− Allocate a vector for event notification on the

host
− Write the vector to “Posted-interrupt notification

vector” VMCS field
− Set a bit in PIR of the destination,

corresponding to the guest vector for IPI upon
VM exit caused by access to ICR (Interrupt
Command Register) in the guest
− Send the even notification

14

Virtual-APIC
Page

VMCS

Posted-interrupt
notification

vector

PI Desc.
Address

PIR

Posted-interrupt
Descriptor

ON

KVM Forum 2012

Summary

• Optimized Interrupt/APIC Virtualization
− APIC-Register Virtualization, Virtual-Interrupt Delivery, and Posted-Interrupt

Processing

•  Enabling the features for KVM
•  Current status
− Patches have been submitted, and got helpful comments from Avi, etc.:
− APIC-Register Virtualization
− Virtual-Interrupt Delivery

− Working on optimized “Guest IPI” using Posted-Interrupt Processing
− Got it working; no VM exits on the destination

•  Preliminary results (Netperf)
− Eliminate up to 50% of VM exits (most of those related to virtualization of

interrupts/APIC)
− Optimize up to 10% of VM exits (emulation made easier for some APIC writes)

 15

